
�

technical note

Creating External
Instrument Drivers for
the Model 4200-SCS

A G R E A T E R M E A S U R E O F C O N F I D E N C E

Introduction

As the measurements performed on semiconductor devices grow increas-
ingly complex, so does the demand for measurement automation. A
typical test setup often involves several instruments performing sourcing,
measurement, or auxiliary functions, all connected to a common commu-
nications bus (typically GPIB) and controlled by a PC station. The Model
4200-SCS parameter analyzer eliminated the need for a dedicated PC. The
Keithley Interactive Test Environment (KITE) allows the Model 4200-SCS
to perform as both a parameter analyzer and an external instrument con-
troller, making it the “command-and-control center” of the entire instru-
ment rack. KITE software already supports several popular instruments,
such as pulse generators, switch matrices, and C-V analyzers, through
software control modules known as drivers.

Occasionally, a user may need to control an instrument that’s not sup-
ported by a standard Keithley driver library. This technical note describes
how to create custom instrument drivers. It assumes the reader is already
familiar with the basic operation and software environment of the Model
4200-SCS, as well as with programming in C language.

Overview

In general, the Model 4200-SCS can control any external instrument
connected to either the IEEE-488 (GPIB) bus or the RS-232 (serial) com-
munication port, thanks to its flexible PC-based architecture. The GPIB
protocol is currently the most widely used one. Figure 1 illustrates a
multi-instrument system configuration.

In the Model 4200-SCS, external equipment is controlled via the User
Test Modules (UTMs), which are essentially C functions created and main-
tained with the Keithley User Library Tool (KULT). Figure 2 illustrates the
relationship between user modules, user libraries, UTMs, KITE, and KULT.

From an operator’s perspective, controlling an external instrument via a
UTM is very similar to programming that instrument from its own front
panel. Once all the instrument settings are entered and saved, running
an instrument is as easy as clicking the Run button in KITE. The added
advantage of external control, however, is that now this UTM can be in-
corporated into a larger KITE project and become a part of a 4200-based
automated test setup. Data collection, processing, graphing, and storage
are also simplified.

�

technical note

Creating External Instrument Drivers
for the 4200-SCS

technical note

Figure 1.

Figure 2.

technical note

�

technical note

Driver Structure

An instrument driver can be as simple or as complex as the function the
instrument is asked to perform. Typically, external instruments fall into
two general categories: auxiliary devices (e.g., wafer probers, thermal
chuck controllers, pulse generators, switch mainframes) and measure-
ment instruments (e.g., C-V meters, LCR meters, oscilloscopes).

Auxiliary device drivers are typically structured as illustrated in Figure 3.

Note that the auxiliary devices require mostly one-way communication
from the controller, which makes the drivers very simple. Measurement
instruments perform more complex functions; therefore, their drivers are
usually more complex. A typical measurement instrument driver is struc-
tured as illustrated in see Figure 4.

General Considerations

Let’s look at an example from the standard Keithley libraries (the existing
libraries that come standard on every Model 4200-SCS).

The standard library for semi-automatic probers on the Model 4200-SCS
is called PrbGen (for Prober Generic). This library contains four modules:
PrInit (Prober Initialize), PrChuck (Prober Chuck), PrMovNxt (Prober
Move Next), and PrSSMovNxt (Prober SubSite Move Next). Without getting
into the details of implementation of these modules, it’s easy to see this
library addresses three primary functions of a semi-automatic prober:

•	 Raising/lowering the wafer chuck (module PrChuck)

•	 Moving the chuck to the next site (die) on the wafer (module
PrMovNxt)

•	 Moving the chuck to the next subsite (sub-die) on the wafer (module
PrSSMovNxt)

It also addresses several auxiliary (but important) functions:

•	 Initializing the prober (module PrInit)

•	 Returning current X,Y die position after every move (module
PrMovNxt)

•	 Returning an execution OK status or an error code (all modules)

This library illustrates several important points in the general approach to
driver structure and implementation:

•	 Select only those functions that are necessary and important.
Keep in mind that programmable instruments are usually capable of a
much wider array of functions than is required for a given project/task,
and trying to cover 100% of the instrument’s capability can be a huge
undertaking. In the semi-automatic prober example, a typical prober
can easily have more than a hundred commands in its programming
manual, while less than ten were sufficient to implement the library.

Initialize/Clear/Reset
Measurement

Instrument

Perform Function
(e.g., Move Chuck

or Close Relay)

Return
Status/Feedback

(optional)

Done

Set Up Instrument
(e.g., Range, Output Values,
Number of Sweep Points)

Initialize/Clear/Reset
Measurement

Instrument

Done

Trigger
Measurement

Poll Instrument Until
Measurement is Done

Retrieve Data
from Instrument

Clean Up/Reset
Instrument

Figure 3.

Figure 4.

�

technical note

Creating External Instrument Drivers
for the 4200-SCS

technical note

•	 Keep the driver modular as much as possible. If there is a
particular instrument function that may need to be called separately
from accompanying functions, create a module around this function
alone, rather than including it in a larger multi-function module. For
example, the function of raising/lowering the chuck (PrChuck) could
have been implemented as part of the function of moving the chuck
to the next die (PrMovNxt) to form a “Chuck Down->Move->Chuck
Up” sequence, but that would make it impossible to address the chuck
without causing a move to the next wafer site.

Driver Implementation

Creating a new instrument driver usually involves the following stages:

1.	 Planning. The main goal of this stage is to develop a clear under-
standing of the functionality expected from the driver. By now, the
user must be familiar with the operation of the instrument itself.

2.	 Layout. The goal of this stage is to break down the list of tasks/func-
tions defined in Step 1 into functional modules. Also, identify all the
corresponding remote commands, using the instrument’s manual.

3.	 Coding. Here is where the layout created in Step 2 is implemented in
C code using the KULT interface. Includes initial code debugging to get
the library to compile and build.

4.	 Testing. At this stage, with the instrument connected to the 4200-SCS,
the driver is tested to see if it works as expected.

5.	 Debugging and adding on. If the testing in Step 4 revealed some
coding flaws, they need to be identified and repaired, and the driver
re-tested. Once the driver starts working, many users decide to make
additions and improvements to the existing code.

6.	 Creating documentation. This is an important but often forgotten
step—it allows the author of the driver to communicate how the driver
works to other users, and makes future debugging and code mainte-
nance much easier. May take the form of comments within the source
code, user/operator instructions entered in the Description area of
the KULT window, a stand-alone Readme file, or all of the above
(recommended).

Implementation Example

We will now follow the step-by-step process of creating a simple auxiliary
device driver, using Keithley’s Model 7002 switch matrix as an example of
the external instrument.

The primary function of a switch matrix is to form interconnections
according to the desired pattern, so we will limit the driver to two basic
user modules: one that performs initialization and one that closes a single
row-column crosspoint.

technical note

technical note

�

technical note

Open the KULT interface by double-clicking the KULT icon on the Model
4200-SCS desktop. A blank KULT window appears named KULT: Module
“NoName” Library “NoName”. Select File -> New Library, and enter name
Keithley _ 7002 _ switch. Then select File -> New Module, and enter
the name Initialize _ switch.

From a C language programming standpoint, so far, we have written the
following:

The first line, #include “keithley.h”, is a so-called preprocessor
directive, which instructs the C compiler to include functions not
explicitly defined in our module. This is inserted in the code automatically
by KULT, and keeping this line is recommended. The next line, void
Initialize _ switch (), declares the name of the function
as well its return type. The curly braces indicate the start and end of
the empty body of the function. The line /*End Initialize _
switch.c*/ is a comment, because the C compiler interprets anything
between /* and */ as a comment. Please note that all of these elements
of the code are created automatically by the KULT environment, and need
not be manually entered.

These steps have created a framework for the new driver, and we are now
ready to start programming. In the module programming area, enter:

The first line, char command _ string[20];, declares an internal vari-
able of type string, named command _ string, with a maximum length
of 20 characters. The C compiler requires all variables to be declared at
the beginning, before calling any functions or performing any other op-
erations. It is okay give this string variable any other name, as long as the
name is used consistently throughout the rest of the module.

The second line, sprintf(command _ string, “*RST”);, assigns the
string “*RST” to the variable command _ string. The sprintf() is
a standard C function. The *RST is a GPIB command, which, according
to the Model 7002 Switch System Instruction Manual, “returns the Model
7002 to the *RST default conditions.” It’s always a good idea to put an in-
strument into a known state before programming it. In this case, the *RST
clears all the errors and opens all the crosspoints on the 7002 switch, and
this is exactly what we want to achieve with this initialization module.

The third line, kibsnd(GPIB _ address, -1, GPIBTIMO,
strlen(command _ string), command _ string);, calls function
kibsnd(), which instructs the Model 4200-SCS to send a string con-
tained in the variable command _ string to the GPIB instrument at ad-
dress GPIB _ address. The function kibsnd() is part of the Keithley

char command _ string[20];

sprintf(command _ string, “*RST”);
kibsnd(GPIB _ address, -1, GPIBTIMO, strlen(command _ string), command _ string);

#include “keithley.h”

void Initialize _ switch ()
{

} /* End Initialize _ switch.c*/

�

technical note

Creating External Instrument Drivers
for the 4200-SCS

technical note

Linear Parametric Test Library (LPTlib), which is document-
ed in detail in the Model 4200-SCS Reference Manual.

Note that we have used a variable called GPIB _ address
as the first argument of the kibsnd() function. We
will turn this variable into a user parameter, which can be
edited from the KITE interface without making any changes
to the source code. Select the Parameters tab at the bottom
of the KULT window, click the Add button, and add this user
parameter, as shown in Figure 5. This completes the code
entry. The module needs to be saved (File -> Save Module),
compiled (Options -> Compile), and built into a library
(Options -> Build Library) before it can be executed.

It may be a good idea at this point to perform an actual test
of the operation of this simple module, before more coding
is done. After connecting the 7002 switch to the Model
4200-SCS with a GPIB cable, create a new UTM in KITE and
point it to the new module, as shown in Figure 6.

Pressing the Run button in KITE should reset the 7002
switch to a default state. If this doesn’t happen, take steps
to determine and correct the cause of the failure (e.g., poor
cable connection, wrong GPIB address entered, etc.)

Once the communication had been established and the
instrument responds the way it should, the driver can be
completed by adding the second module, which performs
the actual function of closing a crosspoint in the switch ma-
trix. Following the same steps as previously, we will arrive at
the following like that shown in Figure 7. The driver is now
complete.

Driver implementation – Beyond the Basics

Please keep in mind that this example was chosen to
illustrate the process of creating the simplest driver.
Most instruments typically require setting up a dozen or
more commands properly. Drivers may also include error
checking, operator prompts, conditional statements, and
many other features that are possible in the programming
environment. Some of the additional techniques are sum-
marized in the following subsections, using fragments of
simplified driver code, borrowed largely from the standard
libraries. The standard 4200-SCS libraries are a great source
of programming examples and techniques. Readers are
highly encouraged to study those drivers and borrow from
them to speed up the learning curve and achieve results in
the most efficient manner.

Figure 5.

Figure 6.

Figure 7.

technical note

�

technical note

Initial “handshaking”

It’s sometimes a good idea to have the driver detect the instrument and
determine its model before proceeding with further programming. If an
unsupported model is detected, the driver should output an error mes-
sage and quit. The following fragment of code illustrates this technique in
the case of the Keithley Model 2400 driver:

Serial polling

An instrument that had been programmed to perform a certain function
(e.g., make a measurement) may take an indeterminate amount of time to
complete it and return results. To indicate that the task has been complet-
ed, instruments set an SRQ status bit. Reading the status of the SRQ bit is
known as serial polling. The following code fragment illustrates how this
is done in the Model 590 driver:

Returning measurement data

The ultimate goal of a measurement instrument driver is to obtain and
bring the data into KITE for plotting and analysis. Depending on the
instrument and the type of measurement, the format of the returned data
will vary. A single-point measurement will return a scalar, while a sweep
will return an array (or several arrays). These return parameters must be
defined in a UTM as output-type arguments of appropriate type. Typi-
cally, after the measurement is complete, as indicated by the set SRQ bit,
the instrument needs to be addressed to return data. The following code
example illustrates how array data is obtained from a Model 590:

sprintf(CommandString, “*IDN?\n”);	 // Send a request for instrument model ID
kibsnd(GPIBAddress24xx, -1, GPIBTIMO, strlen(CommandString), CommandString);
kibrcv(GPIBAddress24xx, IGNORE _ PARAM, LF, GPIBTIMO, max _ size, &rcv _ size, RawReading);			
	 // Receive instrument ID string

 if(strstr(RawReading,”2400”) = = NULL)	// if it is not a 2400
 {
 return (“Instrument not recognized”);
 }

// Set up to enable SRQ on sweep complete
sprintf(CommandString, “M4X”);
kibsnd(GPIBAddress, IGNORE _ PARAM, GPIBTIMO, strlen(CommandString), CommandString);
…….
// Serial poll the instrument to clear
kibspl(GPIBAddress, IGNORE _ PARAM, GPIBTIMO, &spollbyte);

// Now serial poll until the measurement is complete
kibsplw(GPIBAddress, IGNORE _ PARAM, GPIBTIMO, &spollbyte);

technical note

Creating External Instrument Drivers
for the 4200-SCS

Outputting messages

There are several ways to make a UTM output messages, just as there may
be several reasons for a programmer to want to output a message. During
code debugging, it might make sense to output text to a Keithley Message
Console, which is enabled by typing msgcon at the MS-DOS command
prompt. Once the code is working, it might be better to have the module
return its status as a string—for example, “OK” or “ERROR: GPIB TIME-
OUT.” Finally, a pop-up dialog may be called from within a module, using
existing dialog types from the winulib library. These three methods are
illustrated here:

Conclusion

The KULT interface expands the built-in capabilities of the Model 4200-
SCS well beyond those of a dedicated parameter analyzer. Custom instru-
ment drivers address the need for measurement system integration by
providing users with a wide array of programming options.

Specifications are subject to change without notice.

All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

Keithley Instruments, Inc. 	 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168
	 1-888-KEITHLEY (534-8453) • www.keithley.com	

© Copyright 2005 Keithley Instruments, Inc.		 No. 2661
Printed in the U.S.A.		 1005

………………….
// Output a message to the Keithley Message Console:
printf(“measurement complete”);

…………………..
// Output a message for an operator through an OK-type dialog pop-up window:
OkDialog(1, “hello world”, “”, “”, “”);

………………….
//Return function execution status:
return (“OK”);

// Set up a loop:
for (index=0; index < num _ readings; index++)
 {
	 // Read a set of data:
kibrcv(GPIBAddress, IGNORE _ PARAM, LF, GPIBTIMO, max _ size, &rcv _ size, RawReading);
	 //Convert string into three numbers:
 sscanf(RawReading, “%11g,%11g,%11g”, &temp1, &temp2, &temp3);
	 // Assign raw reading data to output arguments:
 C[index] = temp1;
 G _ or _ R[index] = temp2;
 V[index] = temp3;
 }

